
Surface Mount > 600W > NS6A13AT3G

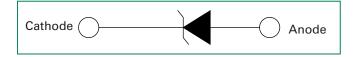
NS6A13AT3G

Maximum Ratings and Thermal Characteristics

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1) @ $T_L = 25$ °C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @TL = 75°C Measured Zero Lead Length (Note 2) Derate Above 75°C Thermal Resistance from Junction—to—Lead	P _D	1.5 20 50	W mW/°C °C/W
DC Power Dissipation (Note 3) @T _A = 25°C Derate Above 25°C Thermal Resistance from Junction–to–Ambient	PD R _{8JA}	0.5 4.0 250	W mW/°C °C/W
Forward Surge Current (Note 4) @ T _A = 25°C	I _{FSM}	40	А
Operating and Storage Temperature Range	T _{J,} T _{stg}	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. 10 X 1000 µs, non-repetitive.
- 2. 1" square copper pad, FR-4 board
- 3. FR-4 board, using minimum recommended footprint, as shown in 403D case outline dimensions spec.
- 4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.


Description

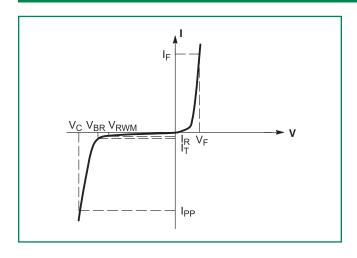
The NS6A13AT3G is designed to protect voltage sensitive components from high voltage, high energy transients. This device has excellent clamping capability, high surge capability, low zener impedance and fast response time. The NS6A13AT3G is ideally suited for use in computer hard disk drives, communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies, and many other industrial/ consumer applications.

Features

- Peak Reverse Working Voltage of 13 V
- Peak Pulse Power of 600 W (10 x 1000 μsec)
- ESD Rating of Class 3 (>16 kV) per Human Body Model
- ESD Rating of Class 4 (>8 kV) IEC 61000-4-2
- Fast Response Time
- Low Profile Package
- This is a Pb-Free Device

Functional Diagram

Additional Information



I-V Curve Characteristics (T_A = 25°C unless otherwise noted, V = 3.5 V Max. @ I_F (Note 5) = 30 A)

Symbol	Parameter		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ I _{PP}		
V _{RWM}	Working Peak Reverse Voltage		
I _R	Maximum Reverse Leakage Current @ V _{RWM}		
V_{BR}	Breakdown Voltage @ I _T		
I _T	Test Current		
I _F	Forward Voltage		
V _F	Forward Voltage @ I _F		

5. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, non-repetitive duty cycle.

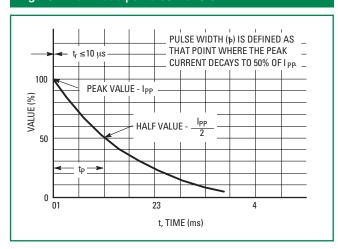
Electrical Characteristics

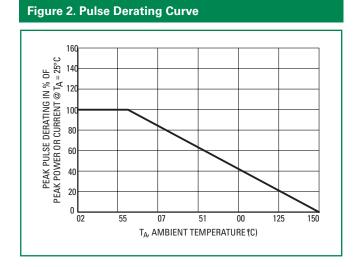
VRWM				Breakdown Voltage			V _C @ I _{PP} (Note 8)		C_{typ}	
Device	Device Marking	(Note 6)	I _R @ V _{RWM}	V _{BR} (Note 7) (V)			@ I _T	V _c	l _{pp}	(Note 9)
	J	V	μΑ	MIN	NOM	MAX	mA	V	А	
NS6A13AT3G	6LG	13	5.0	14.4	15.15	15.9	1.0	21.5	27.9	1160

^{6.} A transient suppressor is normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level

^{7.} V_{BR} measured at pulse test current I_{T} at an ambient temperature of 25°C.

^{8.} Surge current waveform per Figure 1.


^{9.} Bias Voltage = 0 V, F = 1 MHz, $T_J = 25$ °C.


TVS Diodes

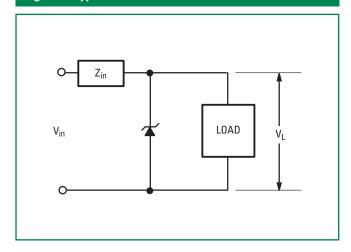
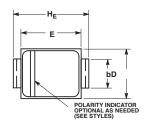
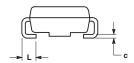
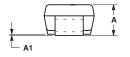

Ratings and Characteristic Curves

Figure 1. 10 x 1000 µs Pulse Waveform




Figure 3. Typical Protection Circuit



Surface Mount > 600W > NS6A13AT3G

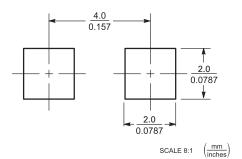
Dimensions

ć.	Inches			Millimeters		
Dim	Min	Nom	Max	Min	Nom	Max
А	1.97	2.10	2.20	0.078	0.083	0.087
A1	0.05	0.10	0.15	0.002	0.004	0.006
b	1.27	1.45	1.63	0.050	0.057	0.064
С	0.15	0.28	0.41	0.006	0.011	0.016
D	2.29	2.60	2.92	0.090	0.103	0.115
Е	4.06	4.32	4.57	0.160	0.170	0.180
HE	4.83	5.21	5.59	0.190	0.205	0.220
L	0.76	1.14	1.52	0.030	0.045	0.060

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. 403D-01 OBSOLETE, NEW STANDARD IS 403D-02

Part Marking System


6LG = Specific Device Code Α = Assembly Location

Υ = Year

WW

= Work Week = Pb-Free Package

Soldering Footrpint

ORDERING INFORMATION

Device	Package	Shippingt
NS6A13AT3G	SMA (Pb-Free)	5000 / Tape & Reel

Flow/Wave Soldering (Solder Dipping)

Peak Temperature :	260°C	
Dipping Time :	10 seconds	

Physical Specifications

Case	Void-free, transfer-molded, thermosetting plastic
Polarity	Cathode indicated by polarity band
Leads	Modified L-Bend providing more contact area to bond pads
Finish	All external surfaces are corrosion resistant and leads are readily solderable
Mounting Position	Any

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.